Negative-GSP: An Efficient Method for Mining Negative Sequential Patterns

نویسندگان

  • Zhigang Zheng
  • Yanchang Zhao
  • Ziye Zuo
  • Longbing Cao
چکیده

Different from traditional positive sequential pattern mining, negative sequential pattern mining considers both positive and negative relationships between items. Negative sequential pattern mining doesn’t necessarily follow the Apriori principle, and the searching space is much larger than positive pattern mining. Giving definitions and some constraints of negative sequential patterns, this paper proposes a new method for mining negative sequential patterns, called Negative-GSP. Negative-GSP can find negative sequential patterns effectively and efficiently by joining and pruning, and extensive experimental results show the efficiency of the method.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient Constraint-Based Sequential Pattern Mining Using Dataset Filtering Techniques

Basic formulation of the sequential pattern discovery problem assumes that the only constraint to be satisfied by discovered patterns is the minimum support threshold. However, very often users want to restrict the set of patterns to be discovered by adding extra constraints on the structure of patterns. Data mining systems should be able to exploit such constraints to speed-up the mining proce...

متن کامل

An Efficient GA-Based Algorithm for Mining Negative Sequential Patterns

Negative sequential pattern mining has attracted increasing concerns in recent data mining research because it considers negative relationships between itemsets, which are ignored by positive sequential pattern mining. However, the search space for mining negative patterns is much bigger than that for positive ones. When the support threshold is low, in particular, there will be huge amounts of...

متن کامل

Sequential Pattern Mining by Pattern-Growth: Principles and Extensions

Sequential pattern mining is an important data mining problem with broad applications. However, it is also a challenging problem since the mining may have to generate or examine a combinatorially explosive number of intermediate subsequences. Recent studies have developed two major classes of sequential pattern mining methods: (1) a candidate generation-and-test approach, represented by (i) GSP...

متن کامل

PrefixSpan: Mining Sequential Patterns by Prefix- Projected Pattern

Sequential pattern mining discovers frequent subsequences as patterns in a sequence database. Most of the previously developed sequential pattern mining methods, such as GSP, explore a candidate generation-and-test approach [1] to reduce the number of candidates to be examined. However, this approach may not be efficient in mining large sequence databases having numerous patterns and/or long pa...

متن کامل

A Study on PSP Algorithm for Automatic Generation of Internet Traffic Signature

In this paper we propose an algorithm approach, so called PSP (Prefix tree for Sequential Patterns) for automatic Internet traffic signatures generation. In presenting PSP algorithm approach, we basically refer it to the GSP (Generalized Sequential Pattern), since PSP algorithm is an extension of GSP algorithm. Actually the two algorithms were originally proposed to deal with data mining proble...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009